Stochastic Viability and Comparison Theorems for Mixed Stochastic Differential Equations
نویسندگان
چکیده
منابع مشابه
Representation Theorems for Backward Stochastic Differential Equations
In this paper we investigate a class of backward stochastic differential equations (BSDE) whose terminal values are allowed to depend on the history of a forward diffusion. We first establish a probabilistic representation for the spatial gradient of the viscosity solution to a quasilinear parabolic PDE in the spirit of the Feynman–Kac formula, without using the derivatives of the coefficients ...
متن کاملStochastic differential equations and integrating factor
The aim of this paper is the analytical solutions the family of rst-order nonlinear stochastic differentialequations. We dene an integrating factor for the large class of special nonlinear stochasticdierential equations. With multiply both sides with the integrating factor, we introduce a deterministicdierential equation. The results showed the accuracy of the present work.
متن کاملMixed Stochastic Delay Differential Equations
where W is a Wiener process, Z is a Hölder continuous process with Hölder exponent greater than 1/2, the coefficients a, b, c depend on the past of the process X . The integral with respect to W is understood in the usual Itô sense, while the one with respect to Z is understood in the pathwise sense. (A precise definition of all objects is given in Section 2.) We will call this equation a mixed...
متن کاملMaximum likelihood estimation for stochastic differential equations with random effects Running headline: Mixed stochastic differential equations
We consider N independent stochastic processes (Xi(t), t ∈ [0, Ti]), i = 1, . . . , N , defined by a stochastic differential equation with drift term depending on a random variable φi. The distribution of the random effect φi depends on unknown parameters which are to be estimated from the continuous observation of the processes Xi. We give the expression of the exact likelihood. When the drift...
متن کاملComputational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Methodology and Computing in Applied Probability
سال: 2013
ISSN: 1387-5841,1573-7713
DOI: 10.1007/s11009-013-9336-9